The assumption that the sampling distribution of the crude odds ratio (ORcrude) is a log-normal distribution with parameters mu and sigma leads to the incorrect conclusion that the expectation of the log of ORcrude is equal to the parameter mu. In fact, mu is the median of the lognormal distribution, not the mean. If a different parameter is obtained as the expected value of the lognormal distribution, then this quantity can be used to obtain a new estimate of the true odds ratio (ORtrue). Here, simulations are conducted based on a simple randomized clinical trial study design. The simulations demonstrate that the new estimate of ORtrue (based on the expectation of the lognormal distribution function) yields interval estimates that are more statistically valid than the standard method. These interval estimates are obtained by both a parametric bootstrap method and a calculated percentile method. The statistical conclusion validity of the estimated confidence intervals are based on the intended coverage probability (ie the probability the confidence interval contains ORtrue). Additionally, an interval based hypothesis test based on the improved confidence interval estimate has higher power to reject the null hypothesis that ORtrue is equal to one when the alternative hypothesis is true (ie ORtrue is not equal to one) than the standard hypothesis test when the intervention is protective.


翻译:粗差比( ORcrude) 的抽样分布假设是带有参数 mu 和 sigma 的逻辑正常分布, 由此得出以下错误的结论: ORcrude 日志的预期值等于参数 mu。 事实上, mu 是日志分布的中位值, 而不是平均值 。 如果获得不同的参数, 是日志分布的预期值, 那么可以使用这个数量来获得对真实差率的新估计值( ORtrude ) 。 在这里, 模拟是根据简单的随机临床试验研究设计进行的。 模拟显示, ORTRE 的新估计值( 以对日志分布函数的预期值为基础) 产生比标准方法更具有统计效力的间隔估计值。 这些间隔估计数是用参数测距法和计算百分数法得出的。 估计信任期的统计结论根据预期的覆盖概率( 即信任期的概率包含 ORturde ) 。 此外, 以更精确的测测测测算基础为基础的测测测测测测测测测, 更的测测测测测算能力更大, 在替代假设为, 当替代假设是等于一种假设为标准时, 。 当替代假设为标准时, 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员