Emerging applications -- cloud computing, the internet of things, and augmented/virtual reality -- demand responsive, secure, and scalable datacenter networks. These networks currently implement simple, per-packet, data-plane heuristics (e.g., ECMP and sketches) under a slow, millisecond-latency control plane that runs data-driven performance and security policies. However, to meet applications' service-level objectives (SLOs) in a modern data center, networks must bridge the gap between line-rate, per-packet execution and complex decision making. In this work, we present the design and implementation of Taurus, a data plane for line-rate inference. Taurus adds custom hardware based on a flexible, parallel-patterns (MapReduce) abstraction to programmable network devices, such as switches and NICs; this new hardware uses pipelined SIMD parallelism to enable per-packet MapReduce operations (e.g., inference). Our evaluation of a Taurus switch ASIC -- supporting several real-world models -- shows that Taurus operates orders of magnitude faster than a server-based control plane while increasing area by 3.8% and latency for line-rate ML models by up to 221 ns. Furthermore, our Taurus FPGA prototype achieves full model accuracy and detects two orders of magnitude more events than a state-of-the-art control-plane anomaly-detection system.
翻译:新兴应用 -- -- 云计算,事物的互联网,以及扩大/虚拟现实 -- -- 需求反应、安全和可扩缩的数据中心网络。这些网络目前在一个慢速、毫秒长控制平面下实施简单、每包、数据机螺旋(如ECMP和草图),该平面运行数据驱动的性能和安全政策。然而,为了在现代数据中心实现应用程序的服务级目标(SLOs),网络必须缩小线率、每包执行和复杂决策之间的差距。在这项工作中,我们展示了Taurus的设计和实施情况,Taurus是一个用于线级推断的数据平面。Taurus根据一个灵活、平行的平板(Mapeduide)的抽象到可编程的网络装置(如开关和NICS);这种新硬件利用SIMD的管道平行功能,使每套件模型的地图操作(如,推断)能够实现。我们对Taurus 开关 ASICY -- -- 支持几个真实世界的模型。Taurus -- -- 支持一些真实世界的模型模型模型。Tal- real- 显示,在Servial- reallistrisal sermal sermal sermal sermal 上比Sermal-real-real-real-real-real-real serveal-real-real-real-real-real-real-real-real-real-real-real-real-regal-real-real-real-real-real-real-real-real-real-real-real-real-real-real-re-re-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-real-re-re-