Few-shot segmentation (FSS) aims to segment unseen classes using a few annotated samples. Typically, a prototype representing the foreground class is extracted from annotated support image(s) and is matched to features representing each pixel in the query image. However, models learnt in this way are insufficiently discriminatory, and often produce false positives: misclassifying background pixels as foreground. Some FSS methods try to address this issue by using the background in the support image(s) to help identify the background in the query image. However, the backgrounds of theses images is often quite distinct, and hence, the support image background information is uninformative. This article proposes a method, QSR, that extracts the background from the query image itself, and as a result is better able to discriminate between foreground and background features in the query image. This is achieved by modifying the training process to associate prototypes with class labels including known classes from the training data and latent classes representing unknown background objects. This class information is then used to extract a background prototype from the query image. To successfully associate prototypes with class labels and extract a background prototype that is capable of predicting a mask for the background regions of the image, the machinery for extracting and using foreground prototypes is induced to become more discriminative between different classes. Experiments for both 1-shot and 5-shot FSS on both the PASCAL-5i and COCO-20i datasets demonstrate that the proposed method results in a significant improvement in performance for the baseline methods it is applied to. As QSR operates only during training, these improved results are produced with no extra computational complexity during testing.
翻译:少截图分解( FSS) 的目的是使用一些附加说明的样本来分割隐蔽的类。 通常, 代表前景类的原型从附加说明的支持图像中提取, 并与查询图像中代表每个像素的特性匹配。 然而, 以这种方式学习的模型没有足够歧视, 往往产生虚假的正面效果: 将背景像素分类为前景。 某些 FSS 方法试图通过使用支持图像中的背景来解决这个问题, 帮助识别查询图像的背景。 然而, 这些图像的背景往往非常不同, 因此, 支持图像背景信息是非信息化的。 此文章建议了一种方法, QSR, 从查询图像中提取背景类像素本身的背景, 结果是在查询图像中更好地区分表面和背景特征特征特征。 通过修改培训进程, 将原型与类标签联系起来, 包括培训数据中已知的等级和代表未知背景对象的隐含的类别。 然后, 类信息被用来从查询图像中提取背景原型。 将背景原型与类原型( QSR) 成功地和基础分析模型联系起来, 将分析模型中的原型( ) 将基础标签和原型分析模型中的原型(BI ) 模型中的原型) 测试中, 的原型) 用于用于为1 的原型的原型, 的原型的原型, 磁制的原型, 磁制的原型, 磁制的原型(B型) 制的原型, 磁制的原型在5 制的原型, 磁制的原型, 磁制的原型, 磁制的原型, 磁制的原型, 磁制的原型, 制的原型, 制的原型, 制的原型, 制的原型的原型, 制的原型, 制的原型, 制的原型的原型, 制的原型, 制的原型的原型的原型的原型的原型的原型的原型的原型在磁制的原型的原型的原型的原型的原型的原型的原型的原型的原型, 制的原型, 制的原型, 制的原型