Surrogate models are often used as computationally efficient approximations to complex simulation models, enabling tasks such as solving inverse problems, sensitivity analysis, and probabilistic forward predictions, which would otherwise be computationally infeasible. During training, surrogate parameters are fitted such that the surrogate reproduces the simulation model's outputs as closely as possible. However, the simulation model itself is merely a simplification of the real-world system, often missing relevant processes or suffering from misspecifications e.g., in inputs or boundary conditions. Hints about these might be captured in real-world measurement data, and yet, we typically ignore those hints during surrogate building. In this paper, we propose two novel probabilistic approaches to integrate simulation data and real-world measurement data during surrogate training. The first method trains separate surrogate models for each data source and combines their predictive distributions, while the second incorporates both data sources by training a single surrogate. We show the conceptual differences and benefits of the two approaches through both synthetic and real-world case studies. The results demonstrate the potential of these methods to improve predictive accuracy, predictive coverage, and to diagnose problems in the underlying simulation model. These insights can improve system understanding and future model development.
翻译:暂无翻译