Phase retrieval (PR) aims to recover a signal from the magnitudes of a set of inner products. This problem arises in many audio signal processing applications which operate on a short-time Fourier transform magnitude or power spectrogram, and discard the phase information. Recovering the missing phase from the resulting modified spectrogram is indeed necessary in order to synthesize time-domain signals. PR is commonly addressed by considering a minimization problem involving a quadratic loss function. In this paper, we adopt a different standpoint. Indeed, the quadratic loss does not properly account for some perceptual properties of audio, and alternative discrepancy measures such as beta-divergences have been preferred in many settings. Therefore, we formulate PR as a new minimization problem involving Bregman divergences. Since these divergences are not symmetric with respect to their two input arguments in general, they lead to two different formulations of the problem. To optimize the resulting objective, we derive two algorithms based on accelerated gradient descent and alternating direction method of multipliers. Experiments conducted on audio signal recovery from spectrograms that are either exact or estimated from noisy observations highlight the potential of our proposed methods for audio restoration. In particular, leveraging some of these Bregman divergences induce better performance than the quadratic loss when performing PR from spectrograms under very noisy conditions.


翻译:阶段检索(PR) 旨在从一组内部产品的规模中恢复信号。 这个问题出现在许多音频信号处理应用程序中,这些应用程序在短短时间的 Fourier变换规模或电源光谱中运行, 并抛弃了阶段信息。 从由此产生的修改光谱中恢复缺失的阶段对于合成时间- 域信号确实是必要的。 PR通常通过考虑一个涉及四级损失功能的最小化问题来解决。 在本文件中, 我们采取不同的观点。 事实上, 二次损失并不适当地说明音频的一些感知特性, 并且在许多环境下, 偏好采用乙级变异度等替代差异性措施。 因此, 我们把光谱作为涉及布雷格曼差异的新的最小化问题。 由于这些差异与其一般的两种输入参数不相称, 导致两种不同的问题表述。 为了优化由此产生的目标, 我们从加速梯度下降和交替方向方法中得出两种算法。 在从从一些从闭调观测中准确或估计的光谱中恢复一些光谱的光谱中进行实验。 因此, 我们的磁带变异度恢复了这些变压的磁图, 显示在B级平方平方平方图下, 显示这些变压的变压的变压的变压法的变压法的变压。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
62+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年10月16日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Advances in Online Audio-Visual Meeting Transcription
Arxiv
4+阅读 · 2019年12月10日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年10月16日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员