We aim at the development and analysis of the numerical schemes for approximately solving the backward diffusion-wave problem, which involves a fractional derivative in time with order $\alpha\in(1,2)$. From terminal observations at two time levels, i.e., $u(T_1)$ and $u(T_2)$, we simultaneously recover two initial data $u(0)$ and $u_t(0)$ and hence the solution $u(t)$ for all $t > 0$. First of all, existence, uniqueness and Lipschitz stability of the backward diffusion-wave problem were established under some conditions about $T_1$ and $T_2$. Moreover, for noisy data, we propose a quasi-boundary value scheme to regularize the "mildly" ill-posed problem, and show the convergence of the regularized solution. Next, to numerically solve the regularized problem, a fully discrete scheme is proposed by applying finite element method in space and convolution quadrature in time. We establish error bounds of the discrete solution in both cases of smooth and nonsmooth data. The error estimate is very useful in practice since it indicates the way to choose discretization parameters and regularization parameter, according to the noise level. The theoretical results are supported by numerical experiments.


翻译:我们的目标是制定和分析大约解决后向扩散波问题的数字办法,这种办法涉及一个分数衍生物,在时间上按1美元(1,2美元)和1美元(1,2美元)。从两个时间级的终端观测中,即1美元(1美元)和2美元(2美元),我们同时回收两个初始数据(0.0美元)和1美元(0.0美元),从而为所有美元 > 0美元的解决办法(t)美元。首先,后向扩散波问题的存在、独特性和利普西茨稳定性在大约1美元和2美元的某些条件下得到了确定。此外,对于噪音数据,我们提出了一个准限值办法,以规范“负数”错误问题,并显示正规化解决办法的趋同。接下来,为了从数字上解决常规化的问题,建议了一个完全独立的方案,在空间和卷变二次曲线中应用有限的元素方法。我们在平滑和非移动波度的两种情况下都确定了离散解决办法的错误界限。对于光度和非悬浮度数据来说,我们提出了一种准值方案。从理论级的精确度到离差度的参数的精确度,这是它所选择的精确度。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
129+阅读 · 2020年4月25日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员