Existing approaches for training neural networks with user-level differential privacy (e.g., DP Federated Averaging) in federated learning (FL) settings involve bounding the contribution of each user's model update by *clipping* it to some constant value. However there is no good *a priori* setting of the clipping norm across tasks and learning settings: the update norm distribution depends on the model architecture and loss, the amount of data on each device, the client learning rate, and possibly various other parameters. We propose a method wherein instead of a fixed clipping norm, one clips to a value at a specified quantile of the update norm distribution, where the value at the quantile is itself estimated online, with differential privacy. The method tracks the quantile closely, uses a negligible amount of privacy budget, is compatible with other federated learning technologies such as compression and secure aggregation, and has a straightforward joint DP analysis with DP-FedAvg. Experiments demonstrate that adaptive clipping to the median update norm works well across a range of realistic federated learning tasks, sometimes outperforming even the best fixed clip chosen in hindsight, and without the need to tune any clipping hyperparameter.


翻译:在联合学习(FL)的设置中,培训具有用户级不同隐私的神经网络的现有方法(例如,DP Federed Averging),在联合学习(FL)的环境下,现有方法包括将每个用户的模型更新贡献范围以*clipp* 约束为一定的不变值。然而,没有良好的 *sposifi * 设置跨越任务和学习环境的剪切规范规范:更新的规范分配取决于模型结构和损失、每个设备的数据数量、客户学习率以及可能的其他参数。我们提出一种方法,在更新标准分布的特定数量中,将每个用户的模型更新值以一个点值为单位,通过 *clipping * 进行约束,使每个用户的模型更新值本身通过在线估算,并有不同的隐私。该方法密切跟踪四分数,使用微量的隐私预算,与压缩和安全聚合等其他节纸化学习技术兼容,并与DP-FedAvg 进行直接的DP-FedAvg 联合的DP DP分析。实验表明,适应中中继更新规范在一系列现实的速化学习任务中,有时甚至超越了最佳的剪剪接式的剪接式剪接式剪接,甚至不需任何超时,甚至不需。

1
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
69+阅读 · 2021年7月1日
专知会员服务
44+阅读 · 2020年10月31日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
6+阅读 · 2021年3月30日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员