Light field microscopy is a compact solution to high-speed 3D fluorescence imaging. Usually, we need to do 3D deconvolution to the captured raw data. Although there are deep neural network methods that can accelerate the reconstruction process, the model is not universally applicable for all system parameters. Here, we develop AutoDeconJ, a GPU accelerated ImageJ plugin for 4.4x faster and accurate deconvolution of light field microscopy data. We further propose an image quality metric for the deconvolution process, aiding in automatically determining the optimal number of iterations with higher reconstruction accuracy and fewer artifacts
翻译:光场显光显光显微镜是高速 3D 荧光成像的紧密解决方案。 通常, 我们需要对采集的原始数据进行 3D 分解 。 虽然有深神经网络方法可以加速重建进程, 但模型并不普遍适用于所有系统参数。 在这里, 我们开发AutoDeconJ, 一个 GPU 加速图像J插件, 用于光场显微镜数据的4. 4x 快速和准确分解 。 我们进一步为分解进程提出图像质量指标, 帮助自动确定最佳迭代次数, 重建精度更高, 工艺品更少 。