Machine learning has recently gained traction as a way to overcome the slow accelerator generation and implementation process on an FPGA. It can be used to build performance and resource usage models that enable fast early-stage design space exploration. First, training requires large amounts of data (features extracted from design synthesis and implementation tools), which is cost-inefficient because of the time-consuming accelerator design and implementation process. Second, a model trained for a specific environment cannot predict performance or resource usage for a new, unknown environment. In a cloud system, renting a platform for data collection to build an ML model can significantly increase the total-cost-ownership (TCO) of a system. Third, ML-based models trained using a limited number of samples are prone to overfitting. To overcome these limitations, we propose LEAPER, a transfer learning-based approach for prediction of performance and resource usage in FPGA-based systems. The key idea of LEAPER is to transfer an ML-based performance and resource usage model trained for a low-end edge environment to a new, high-end cloud environment to provide fast and accurate predictions for accelerator implementation. Experimental results show that LEAPER (1) provides, on average across six workloads and five FPGAs, 85% accuracy when we use our transferred model for prediction in a cloud environment with 5-shot learning and (2) reduces design-space exploration time for accelerator implementation on an FPGA by 10x, from days to only a few hours.
翻译:最近,机器学习作为克服FPGA慢速加速器生成和执行过程的一种方法,最近获得了牵引力,成为克服FPGA慢速加速器生成和执行过程的一种方法。它可以用来建立能够快速早期设计空间探索的性能和资源使用模型。首先,培训需要大量数据(从设计合成和执行工具中提取的地物),由于耗时加速器的设计和实施过程,这种数据是成本效率低下的。第二,为特定环境而培训的模型无法预测一个新的、未知环境的性能或资源使用情况。在云层系统中,租用一个数据收集平台以建立ML模型可以大大提高系统的总成本所有权和资源使用率。第三,利用有限样本培训的MLL模型模型模型模型模型模型模型模型模型模型模型模型的模型模型模型和资源使用率可以大大提高系统的总成本所有权(TCO)。第三,利用有限数量的样本培训的MLLL模型模型模型模型容易过度使用。为了克服这些限制,我们提议采用基于转移的学习方法来预测基于FA系统系统的业绩和资源使用情况。 LEPA的关键思想是将基于低端环境的绩效和资源使用模式模型模型模型模型模型,从新的高端云层云层环境到新的高云层环境环境,提供快速和精确的精确的预测,在5天中进行测试,在测试中提供测试的5度环境的5度环境的10度环境的精确的实验性能能能测测测测测测。