Sparse neural networks attract increasing interest as they exhibit comparable performance to their dense counterparts while being computationally efficient. Pruning the dense neural networks is among the most widely used methods to obtain a sparse neural network. Driven by the high training cost of such methods that can be unaffordable for a low-resource device, training sparse neural networks sparsely from scratch has recently gained attention. However, existing sparse training algorithms suffer from various issues, including poor performance in high sparsity scenarios, computing dense gradient information during training, or pure random topology search. In this paper, inspired by the evolution of the biological brain and the Hebbian learning theory, we present a new sparse training approach that evolves sparse neural networks according to the behavior of neurons in the network. Concretely, by exploiting the cosine similarity metric to measure the importance of the connections, our proposed method, Cosine similarity-based and Random Topology Exploration (CTRE), evolves the topology of sparse neural networks by adding the most important connections to the network without calculating dense gradient in the backward. We carried out different experiments on eight datasets, including tabular, image, and text datasets, and demonstrate that our proposed method outperforms several state-of-the-art sparse training algorithms in extremely sparse neural networks by a large gap. The implementation code is available on https://github.com/zahraatashgahi/CTRE


翻译:松散的神经网络在计算效率的同时,表现出与密集的神经网络相似的性能,因此吸引了越来越多的兴趣。 淡化稠密的神经网络是用来获取稀有神经网络的最广泛使用的方法之一。 受这种对低资源设备来说负担不起的方法的高培训成本的驱使,培训稀散的神经网络最近引起了人们的注意。 然而,现有的稀疏的培训算法存在各种问题,包括高空间情景的性能不佳,培训期间计算密度的梯度信息,或纯粹随机的地形搜索。 本文在生物大脑和赫比亚学习理论演变的启发下,提出了一种新的稀薄的培训方法,根据网络神经人的行为发展稀薄的神经网络。 具体地说,通过利用同源相似的量度测量连接的重要性,我们拟议的方法,科斯廷相似性和随机地形探索(CTREE),通过在不计算落后的密度梯度梯度的情况下,将稀薄神经网络的表面学进化为最重要的连接。 我们在8个数据库上进行了不同的实验, 包括表层式、 稀有的算法, 展示了我们现有的大量结构图象 。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员