Recommender systems can automatically recommend users items that they probably like, for which the goal is to represent the user and item as well as model their interaction. Existing methods have primarily learned the user's preferences and item's features with vectorized representations, and modeled the user-item interaction by the similarity of their representations. In fact, the user's different preferences are related and capturing such relations could better understand the user's preferences for a better recommendation. Toward this end, we propose to represent the user's preference with multi-variant Gaussian distribution, and model the user-item interaction by calculating the probability density at the item in the user's preference distribution. In this manner, the mean vector of the Gaussian distribution is able to capture the center of the user's preferences, while its covariance matrix captures the relations of these preferences. In particular, in this work, we propose a dual preference distribution learning framework (DUPLE), which captures the user's preferences to both the items and attributes by a Gaussian distribution, respectively. As a byproduct, identifying the user's preference to specific attributes enables us to provide the explanation of recommending an item to the user. Extensive quantitative and qualitative experiments on six public datasets show that DUPLE achieves the best performance over all state-of-the-art recommendation methods.


翻译:推荐人系统可以自动推荐他们可能喜欢的用户项目,目标是代表用户和项目,以及模拟他们的相互作用。现有方法主要通过传介表达方式了解用户的偏好和项目特征,并用其相似的表达方式模拟用户项目互动。事实上,用户的不同偏好是相互关联的,捕捉这种关系可以更好地了解用户的偏好,以提出更好的建议。为此,我们提议通过计算用户偏好分布方式,以多变量分配方式代表用户的偏好,并以用户偏好分布方式的概率密度作为用户项目互动的模型。以这种方式,高斯分配方式的平均矢量媒介能够捕捉到用户偏好的中心,而其共变矩阵则捕捉到这些偏好的关系。特别是,我们为此提议了一个双重偏好分配学习框架(DUPLE),它通过高斯分布方式分别反映用户对项目和属性的偏好,作为产品,确定用户对特定属性的偏好度,从而能够捕捉用户偏好用户偏好用户偏好选择的中心点,从而显示所有量化方法。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员