This paper presents a framework to represent high-fidelity pointcloud sensor observations for efficient communication and storage. The proposed approach exploits Sparse Gaussian Process to encode pointcloud into a compact form. Our approach represents both the free space and the occupied space using only one model (one 2D Sparse Gaussian Process) instead of the existing two-model framework (two 3D Gaussian Mixture Models). We achieve this by proposing a variance-based sampling technique that effectively discriminates between the free and occupied space. The new representation requires less memory footprint and can be transmitted across limitedbandwidth communication channels. The framework is extensively evaluated in simulation and it is also demonstrated using a real mobile robot equipped with a 3D LiDAR. Our method results in a 70 to 100 times reduction in the communication rate compared to sending the raw pointcloud.
翻译:本文提出了一个框架,用以代表高不忠度点球感官观测,促进高效通信和储存。拟议方法利用斯普尔西·高斯进程将点编码成一个紧凑的形式。我们的方法代表自由空间和占用空间,仅使用一个模型(一个 2D 斯普尔西·高斯进程),而不是现有的两个模型框架(两个 3D 高斯Mixtures 模型)。我们提出基于差异的抽样技术,有效地区分自由空间和占用空间。新的表达方式需要减少记忆足迹,并可在带宽的通信渠道中传递。在模拟中广泛评价该框架,并使用配备3D LiDAR的真正的移动机器人来证明。我们的方法使得通信速度比发送原始点柱减少70至100倍。