Immersive multimedia applications, such as Virtual, Augmented and Mixed Reality, have become more practical with advances in hardware and software for acquiring and rendering 3D media as well as 5G/6G wireless networks. Such applications require the delivery of volumetric video to users with six degrees of freedom (6-DoF) movements. Point Cloud has become a popular volumetric video format due to its flexibility and simplicity. A dense point cloud consumes much higher bandwidth than a 2D/360 degree video frame. User Field of View (FoV) is more dynamic with 6-DoF movement than 3-DoF movement. A user's view quality of a 3D object is affected by points occlusion and distance, which are constantly changing with user and object movements. To save bandwidth, FoV-adaptive streaming predicts user FoV and only downloads the data falling in the predicted FoV, but it is vulnerable to FoV prediction errors, which is significant when a long buffer is used for smoothed streaming. In this work, we propose a multi-round progressive refinement framework for point cloud-based volumetric video streaming. Instead of sequentially downloading frames, we simultaneously downloads/patches multiple frames falling into a sliding time-window, leveraging on the scalability of point-cloud coding. The rate allocation among all tiles of active frames are solved analytically using the heterogeneous tile utility functions calibrated by the predicted user FoV. Multi-frame patching takes advantage of the streaming smoothness resulted from long buffer and the FoV prediction accuracy at short buffer length. We evaluate our solution using simulations driven by real point cloud videos, bandwidth traces and 6-DoF FoV traces of real users. The experiments show that our solution is robust against bandwidth/FoV prediction errors, and can deliver high and smooth quality in the face of bandwidth variations and dynamic user movements.
翻译:虚拟、 增强和混合Reality 等闪烁多媒体应用程序随着用于获取和提供 3D 媒体的硬件和软件以及5G/6G无线网络的进步而变得更加实用。 此类应用程序需要向用户提供有六度自由( 6- DoF) 移动的量级视频。 点云因其灵活性和简单性而成为一种流行的量级视频格式。 密度点云消耗的带宽比 2D/ 360 摄像框要高得多。 用户 FoV 显示的温度比 3 DoF 移动的长度要快得多。 用户对 3D 对象的精确度的浏览质量要快得多。 用户对 3D 的直流的直径性视频的浏览质量要受到点加宽度和距离的影响。 为了保存带宽度( 6- DoV 适应性流流动) 预示着用户Fov 下降的数据, 但是它很容易受到Fov 预测错误的影响, 当使用长缓冲来平滑动流流时, 。 通过这项工作, 我们建议一个多点点点点流流流流流流流流流流流流流流流流的精度的精度的精度的精度递化框架, 利用着的流流流流流流流流流流流流的流的流流的流 以不断递动的递动的流 显示的流流流流流的流的流 递动的流 向 显示的流, 的流 方向 向的流 方向 方向 方向 方向 方向 向 向 方向 方向 方向 方向 显示 方向 方向 方向 显示着 方向 方向 方向 方向 方向 方向 方向 方向 。</s>