We continue our study [Domain Uncertainty Quantification in Computational Electromagnetics, JUQ (2020), 8:301--341] of the numerical approximation of time-harmonic electromagnetic fields for the Maxwell lossy cavity problem for uncertain geometries. We adopt the same affine-parametric shape parametrization framework, mapping the physical domains to a nominal polygonal domain with piecewise smooth maps. The regularity of the pullback solutions on the nominal domain is characterized in piecewise Sobolev spaces. We prove error convergence rates and optimize the algorithmic steering of parameters for edge-element discretizations in the nominal domain combined with: (a) multilevel Monte Carlo sampling, and (b) multilevel, sparse-grid quadrature for computing the expectation of the solutions with respect to uncertain domain ensembles. In addition, we analyze sparse-grid interpolation to compute surrogates of the domain-to-solution mappings. All calculations are performed on the polyhedral nominal domain, which enables the use of standard simplicial finite element meshes. We provide a rigorous fully discrete error analysis and show, in all cases, that dimension-independent algebraic convergence is achieved. For the multilevel sparse-grid quadrature methods, we prove higher order convergence rates which are free from the so-called curse of dimensionality, i.e. independent of the number of parameters used to parametrize the admissible shapes. Numerical experiments confirm our theoretical results and verify the superiority of the sparse-grid methods.
翻译:我们继续研究[数学电磁计算法中不确定性的数值近似值,JUQ(2020年),8:301-341, 用于对不确定的地貌进行马克斯韦尔丢失腔腔问题的时间调调电磁场的数字近似值, 继续研究。 我们采用同样的偏差和偏差形状对称形状对称框架, 将物理域映射成一个名义多边形域, 以平滑的地图为图示。 名义域的拉回解决方案的规律性以平面 Sobolev 空间为特征。 我们证明了差错趋同率, 优化了名义域边缘- 离异参数参数的算法方向, 加上:(a) 多层次的蒙特卡洛取样, 和(b) 多层次的、 稀疏的电离电离式二次曲线对计算解决方案的预期值。 此外, 我们分析了稀疏电网间对域- 解解解解析的图数数, 所有计算都是在多层次的标度域域域域域域上进行,, 使得能够使用离层精度的精度精度精度的精度递的精度递化精度的精度递性精度的精度递化精度的精度的精度的精度结果, 校正度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度, 。