We develop a fast method for computing the electrostatic energy and forces for a collection of charges in doubly-periodic slabs with jumps in the dielectric permittivity at the slab boundaries. Our method achieves spectral accuracy by using Ewald splitting to replace the original Poisson equation for nearly-singular sources with a smooth far-field Poisson equation, combined with a localized near-field correction. Unlike existing spectral Ewald methods, which make use of the Fourier transform in the aperiodic direction, we recast the problem as a two-point boundary value problem in the aperiodic direction for each transverse Fourier mode, for which exact analytic boundary conditions are available. We solve each of these boundary value problems using a fast, well-conditioned Chebyshev method. In the presence of dielectric jumps, combining Ewald splitting with the classical method of images results in smoothed charge distributions which overlap the dielectric boundaries themselves. We show how to preserve high order accuracy in this case through the use of a harmonic correction which involves solving a simple Laplace equation with smooth boundary data. We implement our method on Graphical Processing Units, and combine our doubly-periodic Poisson solver with Brownian Dynamics to study the equilibrium structure of double layers in binary electrolytes confined by dielectric boundaries. Consistent with prior studies, we find strong charge depletion near the interfaces due to repulsive interactions with image charges, which points to the need for incorporating polarization effects in understanding confined electrolytes, both theoretically and computationally.


翻译:我们开发了一种快速的方法,用来计算静电能量和电力,以收集在平板边界的双周期性平板的收费。我们的方法通过使用Ewald分解来取代原Poisson等式,以平滑的远野Poisson等式取代近色源的原始Poisson等式,加上局部的近地校正。与现有的光谱Ewald方法不同,它利用Fourier变换周期性方向,我们把问题缩小为两点边界值问题,在每个跨向的Fourier模式的周期性方向中,以跳跃式平流电流通电路,我们的方法实现了光度平流的平板边界结构,我们用直流的平流平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,我们用平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,我们平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员