For general spin systems, we prove that a contractive coupling for any local Markov chain implies optimal bounds on the mixing time and the modified log-Sobolev constant for a large class of Markov chains including the Glauber dynamics, arbitrary heat-bath block dynamics, and the Swendsen-Wang dynamics. This reveals a novel connection between probabilistic techniques for bounding the convergence to stationarity and analytic tools for analyzing the decay of relative entropy. As a corollary of our general results, we obtain $O(n\log{n})$ mixing time and $\Omega(1/n)$ modified log-Sobolev constant of the Glauber dynamics for sampling random $q$-colorings of an $n$-vertex graph with constant maximum degree $\Delta$ when $q > (11/6 - \epsilon_0)\Delta$ for some fixed $\epsilon_0>0$. We also obtain $O(\log{n})$ mixing time and $\Omega(1)$ modified log-Sobolev constant of the Swendsen-Wang dynamics for the ferromagnetic Ising model on an $n$-vertex graph of constant maximum degree when the parameters of the system lie in the tree uniqueness region. At the heart of our results are new techniques for establishing spectral independence of the spin system and block factorization of the relative entropy. On one hand we prove that a contractive coupling of a local Markov chain implies spectral independence of the Gibbs distribution. On the other hand we show that spectral independence implies factorization of entropy for arbitrary blocks, establishing optimal bounds on the modified log-Sobolev constant of the corresponding block dynamics.


翻译:对于一般旋转系统,我们证明,任何本地马可夫链的契约结合意味着混合时间的最佳界限,以及包括Glauber动态、任意热吸浴区块动态和Swindsen-Wang动态在内的大型马尔科夫链的修改的日志-Sobolev常数,包括Glauber动态、任意热吸浴区块动态和Swindsen-Wang动态。这揭示了将趋同于静态的概率技术与分析相对变异的工具之间的新联系。作为我们总体结果的一个必然结果,我们获得了 $(n\log{n}) 混合时间和$(Omega(1/n) 美元) 的修改的日志-Sobolev值常数常数常数常数常数。 当 $ > (11/6 - \ \ \ \ \ \ epsillon_0)\ Delta$ 用于某些固定的 $\ epsilon_0 > 美元。我们还获得了 commluslusloral liveral livalal listral liver liver liver liver liver liver reslistral resal resal restial resml resml resmal restial restial restial resmlview resmlval res resm resmlation resmlation resmlation resm resmlation resmlation resmlation resmlutututut ressmlation ressml,我们的系统的系统, 当值系统显示一个固定的系统的固定的系统的内基的内基的内基的内基的内值的内值, 当值,我们等的内基的内基的内基的内基的内基的内值的内基值的内值的内值的内值的内值的内基的内基的内值,我们的内基的内基的内基的内值。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
7+阅读 · 2020年6月29日
Factor Graph Attention
Arxiv
6+阅读 · 2019年4月11日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员