Large-scale UAV switching formation tracking control has been widely applied in many fields such as search and rescue, cooperative transportation, and UAV light shows. In order to optimize the control performance and reduce the computational burden of the system, this study proposes an event-triggered optimal formation tracking controller for discrete-time large-scale UAV systems (UASs). And an optimal decision - optimal control framework is completed by introducing the Hungarian algorithm and actor-critic neural networks (NNs) implementation. Finally, a large-scale mixed reality experimental platform is built to verify the effectiveness of the proposed algorithm, which includes large-scale virtual UAV nodes and limited physical UAV nodes. This compensates for the limitations of the experimental field and equipment in realworld scenario, ensures the experimental safety, significantly reduces the experimental cost, and is suitable for realizing largescale UAV formation light shows.
翻译:大型无人驾驶航空器转换形成跟踪控制已广泛应用于许多领域,如搜索和救援、合作运输和无人驾驶航空器灯光显示等,为了优化系统的控制性能和减少系统的计算负担,本研究报告提议为离散大型无人驾驶航空器系统建立一个事件触发的最佳编组跟踪控制器,并通过引入匈牙利算法和行为者-行为者-环境神经网络(NNS)实施,完成最佳决策----最佳控制框架。最后,建立了一个大型的混合现实实验平台,以核实拟议算法的有效性,其中包括大型虚拟无人驾驶航空器节点和有限的物理无人驾驶航空器节点。这弥补了实验场和设备在现实世界情景中的局限性,确保实验安全,大幅降低实验成本,并适合实现大型无人驾驶航空器形成光显示。