We study counting propositional logic as an extension of propositional logic with counting quantifiers. We prove that the complexity of the underlying decision problem perfectly matches the appropriate level of Wagner's counting hierarchy, but also that the resulting logic admits a satisfactory proof-theoretical treatment. From the latter, a type system for a probabilistic lambda-calculus is derived in the spirit of the Curry-Howard correspondence, showing the potential of counting propositional logic as a useful tool in several fields of theoretical computer science.
翻译:我们用量化因素来计算假设逻辑的延伸。 我们证明基本决定问题的复杂性完全符合Wagner的计算等级的恰当水平,但由此得出的逻辑也承认了一种令人满意的证据理论治疗。 从后者来看,一种概率性羊羔计算法的分类系统是来自Curry-Howard通信的精神,表明计算假设逻辑作为计算机理论科学若干领域的有用工具的潜力。