This paper provides an efficient recursive approach of the spectral Tau method to approximate the solution of system of generalized Abel-Volterra integral equations. In this regards, we first investigate the existence, uniqueness as well as smoothness of the solutions under assumption on the given data. Next, from a numerical perspective, we express approximated solution as a linear combination of suitable canonical polynomials which are constructed by an easy to use recursive formula. Mostly, the unknown parameters are calculated by solving a low dimensional algebraic systems independent of degree of approximation which prevent from high computational costs. Obviously, due to singular behavior of the exact solutions, using classical polynomials to construct canonical polynomials, leads to low accuracy results. In this regards, we develop a new fractional order canonical polynomials using M\"untz-Legendre polynomials which have a same asymptotic behavior with the solution of underlying problem. The convergence analysis is discussed, and the familiar spectral accuracy is achieved in $L^{\infty}$ norm. Finally, the reliability of the method is evaluated using various problems.
翻译:本文提供了一种高效的光 Tau 光谱法递归方法, 以近距离光学- Volterra 集成方程式系统解决方案的近似方法。 在这方面, 我们首先调查假设给定数据的假设下解决方案的存在、 独特性和光滑性。 其次, 从数字角度, 我们表示近似解决方案, 是合适的光谱多元共振的线性组合, 由容易使用循环公式构建。 多数情况下, 未知参数的计算方法是解决一个低维代代谢系统, 独立于近似度, 防止高计算成本。 显然, 由于精确解决方案的奇特行为, 使用古典多面体模型来构建光学多元多面模型, 导致低精度结果。 在这方面, 我们用 M\" untz- Legendre 聚度模型来开发一种新的分数性组合性组合, 与根本问题的解决方案具有相同的类似模拟行为。 正在讨论趋同分析, 而熟悉的光谱精确度精确度是在 $Lüinfty} 标准下实现的。 最后, 使用各种方法的可靠性是评估。