The quarterly financial statement, or Form 10-Q, is one of the most frequently required filings for US public companies to disclose financial and other important business information. Due to the massive volume of 10-Q filings and the enormous variations in the reporting format, it has been a long-standing challenge to retrieve item-specific information from 10-Q filings that lack machine-readable hierarchy. This paper presents a solution for itemizing 10-Q files by complementing a rule-based algorithm with a Convolutional Neural Network (CNN) image classifier. This solution demonstrates a pipeline that can be generalized to a rapid data retrieval solution among a large volume of textual data using only typographic items. The extracted textual data can be used as unlabeled content-specific data to train transformer models (e.g., BERT) or fit into various field-focus natural language processing (NLP) applications.
翻译:季度财务报表,即表格10-Q,是美国公共公司披露财务和其他重要商业信息最经常需要的归档文件之一,由于10-Q文件数量巨大,报告格式也存在巨大差异,从缺乏机器可读性等级的10-Q文件检索具体项目信息是一项长期挑战。本文件为10-Q文件逐项化提供了解决办法,它补充了基于规则的算法,并配有了一个动态神经网络图像分类器。这一解决办法表明,在大量仅使用印刷品的文本数据中,可以普遍推广为快速的数据检索解决方案。提取的文本数据可以作为无标签的特定内容数据,用于培训变压器模型(如BERT)或适合各种外地重点自然语言处理应用的变压器(NLP)。