Hidden Markov Models (HMMs) and Probabilistic Context-Free Grammars (PCFGs) are widely used structured models, both of which can be represented as factor graph grammars (FGGs), a powerful formalism capable of describing a wide range of models. Recent research found it beneficial to use large state spaces for HMMs and PCFGs. However, inference with large state spaces is computationally demanding, especially for PCFGs. To tackle this challenge, we leverage tensor rank decomposition (aka.\ CPD) to decrease inference computational complexities for a subset of FGGs subsuming HMMs and PCFGs. We apply CPD on the factors of an FGG and then construct a new FGG defined in the rank space. Inference with the new FGG produces the same result but has a lower time complexity when the rank size is smaller than the state size. We conduct experiments on HMM language modeling and unsupervised PCFG parsing, showing better performance than previous work. Our code is publicly available at \url{https://github.com/VPeterV/RankSpace-Models}.
翻译:隐藏的Markov 模型(HMMMs)和没有环境的概率语法模型(PCFGs)被广泛采用结构化模型,这两种模型都可以作为要素图形语法和PCFGs(FGs)代表,这是一种强大的形式主义,能够描述各种模型。最近的研究发现,使用大型国家空间用于HMMs和PCFGs(HMMs)是有好处的。然而,对大型州空间的推论在计算上要求很高,特别是对PCFGs。为了应对这一挑战,我们利用高压等级分解(a.\ CPS)来减少FGs子集子子集(HMMs和PCFGs)的推论计算复杂性。我们对FGs(FGs)因素应用了计算法,然后在等级空间中定义了一个新的FGGs。与新的FGGs产生同样的结果,但在级别大小小于州规模时,时间复杂性较低。我们用HMMMM语言建模和无超级的PCFCG分解,显示比以前的工作要好。我们的代码在\/MSAPMESBs@/Vs/Gs.Gs.Gs.