The Poisson-Boltzmann equation (PBE) is an implicit solvent continuum model for calculating the electrostatic potential and energies of ionic solvated biomolecules. However, its numerical solution remains a significant challenge due strong singularities and nonlinearity caused by the singular source terms and the exponential nonlinear terms, respectively. An efficient method for the treatment of singularities in the linear PBE was introduced in \cite{BeKKKS:18}, that is based on the RS tensor decomposition for both electrostatic potential and the discretized Dirac delta distribution. In this paper, we extend this regularization method to the nonlinear PBE. We apply the PBE only to the regular part of the solution corresponding to the modified right-hand side via extraction of the long-range part in the discretized Dirac delta distribution. The total electrostatic potential is obtained by adding the long-range solution to the directly precomputed short-range potential. The main computational benefit of the approach is the automatic maintaining of the continuity in the Cauchy data on the solute-solvent interface. The boundary conditions are also obtained from the long-range component of the precomputed canonical tensor representation of the Newton kernel. In the numerical experiments, we illustrate the accuracy of the nonlinear regularized PBE (NRPBE) over the classical variant.
翻译:Poisson-Boltzmann 方程式(PBE)是计算电静电潜力和离散的Dirac delta分布的隐含溶剂连续模型,但是,由于单源术语和指数非线性术语分别导致的强异性和非线性,其数字解决方案仍是一个重大挑战。在\cite{BeKKKS:18}中引入了处理线性 PBE 中奇异的有效方法。在直接计算前的短期潜力和离散的Dirac delta分布的RS 振动分解法的基础上,获得总电静电潜能。在本文中,我们将这一正规法方法扩展至非线性 PBE。我们只将PBE 应用于通过提取离散式 Dirac 三角分布的长距离部分而修改的右侧方方方方方方方方方方方方方方方方方言。通过将远程预合成流流流流流流变异性模型添加长方言式解决方案。该方法的主要计算好处是自动保持Concial-cultial deal devidual dedual deal deal the the exment thendududududustral develut the the exmentalmentalmentalmentalmentalmentalmental the ex-Idududududududududududududududualmentalmentaldaldalmentalmentalment the the exment the exmentalmentalmentalmentalmentalmentalmentalmentalmentalmentalmentalmental