This paper presents a score-based weighted likelihood estimator (SWLE) for robust estimations of generalized linear model (GLM) for insurance loss data. The SWLE exhibits a limited sensitivity to the outliers, theoretically justifying its robustness against model contaminations. Also, with the specially designed weight function to effectively diminish the contributions of extreme losses to the GLM parameter estimations, most statistical quantities can still be derived analytically, minimizing the computational burden for parameter calibrations. Apart from robust estimations, the SWLE can also act as a quantitative diagnostic tool to detect outliers and systematic model misspecifications. Motivated by the coverage modifications which make insurance losses often random censored and truncated, the SWLE is extended to accommodate censored and truncated data. We exemplify the SWLE on three simulation studies and two real insurance datasets. Empirical results suggest that the SWLE produces more reliable parameter estimates than the MLE if outliers contaminate the dataset. The SWLE diagnostic tool also successfully detects any systematic model misspecifications with high power, accompanying some potential model improvements.
翻译:本文为保险损失数据的通用线性模型(GLM)的可靠估计提供了一个基于分数的加权概率估计值。 SWLE对外部线性模型(GLM)的保险损失数据显示的敏感度有限,在理论上证明它对模型污染的稳健性。此外,由于专门设计的旨在有效减少极端损失对GLM参数估计的贡献的权重功能,大多数统计数量仍可以分析得出,从而最大限度地减少参数校准的计算负担。除了可靠的估计外,SWLE还可以作为一种定量诊断工具,用以检测外部线性和系统性模型的误差。SWLE的诊断工具,在使保险损失经常被随机检查和疏漏的保险范围修改之后,SWLE被扩大,以适应受检查和疏漏的数据。我们将SWLE的三个模拟研究和两个真正的保险数据集作为例子,表明SWLE产生比MLE更可靠的参数估计值,如果外层污染了数据集。SWLE的诊断工具还成功地检测了高功率的系统模型误差。