We consider the problem of rectangular matrix completion in the regime where the matrix $M$ of size $n\times m$ is ``long", i.e., the aspect ratio $m/n$ diverges to infinity. Such matrices are of particular interest in the study of tensor completion, where they arise from the unfolding of an odd-order low-rank tensor. In the case where the sampling probability is $\frac{d}{\sqrt{mn}}$, we propose a new algorithm for recovering the singular values and left singular vectors of the original matrix based on a variant of the standard non-backtracking operator of a suitably defined bipartite graph. We show that when $d$ is above a Kesten-Stigum-type sampling threshold, our algorithm recovers a correlated version of the singular value decomposition of $M$ with quantifiable error bounds. This is the first result in the regime of bounded $d$ for weak recovery and the first result for weak consistency when $d\to\infty$ arbitrarily slowly without any polylog factors.
翻译:我们考虑在矩形矩阵完成问题中,矩阵 $M$ 的大小为 $n\times m$,其中宽高比 $m/n$ 趋近于无穷。在张量完成研究中,这种矩阵特别有用,因为它们由一个奇次低秩张量的展开得到。在采样概率为 $\frac{d}{\sqrt{mn}}$ 的情况下,我们提出了一种基于一种适当定义的二分图的标准非回溯算子的变体的新算法,用于恢复原始矩阵的奇异值和左奇异向量。我们证明,当 $d$ 超过 Kesten-Stigum型采样阈值时,我们的算法可以恢复与 $M$ 的奇异值分解相关的版本,并具有可量化的误差界。这是第一个在有界 $d$ 的情况下弱恢复的结果,并且在 $d\to\infty$ 任意缓慢地增长而没有多项式对数因子的情况下是第一个弱一致性的结果。