项目名称: 基于检索优化的三维特征建模方法研究

项目编号: No.61502124

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 计算机科学学科

项目作者: 高雪瑶

作者单位: 哈尔滨理工大学

项目金额: 20万元

中文摘要: 本项目研究历程无关的三维特征建模方法。利用特征名来标识拓扑面,以邻接面为基础来命名边和点。引入虚拓扑元素与子边的概念来处理拓扑元素消失和不构成几何边界的问题。扩展特征依赖图,使其具有一定的层次结构。在历程无关特征操作中,提出确定特征修改优先级的相关规则,以实现模型的正确重构。以面的形状相似性和邻域结构相似性为基础,使用Ullmann算法进行模型检索。从已有模型中检索可重用部件,并将其用于约束求解,以提高造型效率。借鉴空间刚体运动学的基本定义,以几何实体的欧拉参数表示为基础,建立适用于历程无关建模的约束表达形式。将几何约束转化为代数表达式,将代数方程组的求解视为优化问题。利用粒子群优化算法进行搜索,引入早熟监视机制来观察种群的进化情况,计算种群适应度方差来判断搜索过程是否陷入局部最优。当陷入局部最优时,使用混沌搜索策略进行激活,指导粒子群寻找最优解,提高模型的可编辑性和可修改性。

中文关键词: 历程无关;虚拓扑元素;模型检索;约束求解;粒子群优化

英文摘要: In this task, a 3D history-independent feature modeling method is researched. Topological faces are named by feature names. Topological edges and vertexes are named by their adjacent faces respectively. Virtual topological entities and sub-edges are introduced to solve the problem that topological entities disappear or can not construct geometry boundaries of the model. Feature dependent graph is extended, which makes it have hierarchical structures. In history-independent feature operations, the rules to determine the priorities of feature modification are proposed to reconstruct the model correctly. Ullmann algorithm is applied to model retrieval based on shape similarity and neighbor structure similarity. The reusable parts are retrieved from the existing model and are applied to the modeling process in which the method of constraint solving is utilized to improve the modeling efficiency. The definitions of dimensional rigid body kinematics are used for reference. Based on Euler parameter expressions of geometric entities, constraint expressions suitable to the history-independent modeling are given. Geometric constraints are transformed into algebraic expressions, and the process of solving algebraic equations is regarded as optimization problems. Particle swarm optimization algorithm is used to search solutions. Premature estimation mechanism is introduced to check the evolution of the swarm. Swarm fitness variance is computed to decide whether the particle swarm gets into the local extremum. When the algorithm gets into the local extremum, the chaos search strategy is used to activate particles and search the global best solution. The purpose of this task is to promote the efficiency of editing and modifying models.

英文关键词: history-independent;virtual topological entities;model retrieval;constraint solving;particle swarm optimization

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
14+阅读 · 2021年8月2日
专知会员服务
14+阅读 · 2021年6月26日
【CVPR2021】面向视频动作分割的高效网络结构搜索
专知会员服务
13+阅读 · 2021年3月14日
专知会员服务
69+阅读 · 2021年1月16日
深度学习图像检索(CBIR): 十年之大综述
专知会员服务
46+阅读 · 2020年12月5日
【NeurIPS 2020】对比学习全局和局部医学图像分割特征
专知会员服务
43+阅读 · 2020年10月20日
专知会员服务
49+阅读 · 2020年6月14日
计算机视觉中的传统特征提取方法总结
极市平台
1+阅读 · 2021年12月9日
SIGIR2021 | 基于排序的推荐系统度量优化新视角
机器学习与推荐算法
1+阅读 · 2021年12月6日
深度学习图像检索(CBIR): 十年之大综述
专知
65+阅读 · 2020年12月5日
基于二进制哈希编码快速学习的快速图像检索
极市平台
12+阅读 · 2018年5月17日
一文看懂常用特征工程方法
AI研习社
17+阅读 · 2018年5月2日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
54+阅读 · 2022年1月1日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Arxiv
17+阅读 · 2018年4月2日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
14+阅读 · 2021年8月2日
专知会员服务
14+阅读 · 2021年6月26日
【CVPR2021】面向视频动作分割的高效网络结构搜索
专知会员服务
13+阅读 · 2021年3月14日
专知会员服务
69+阅读 · 2021年1月16日
深度学习图像检索(CBIR): 十年之大综述
专知会员服务
46+阅读 · 2020年12月5日
【NeurIPS 2020】对比学习全局和局部医学图像分割特征
专知会员服务
43+阅读 · 2020年10月20日
专知会员服务
49+阅读 · 2020年6月14日
相关资讯
计算机视觉中的传统特征提取方法总结
极市平台
1+阅读 · 2021年12月9日
SIGIR2021 | 基于排序的推荐系统度量优化新视角
机器学习与推荐算法
1+阅读 · 2021年12月6日
深度学习图像检索(CBIR): 十年之大综述
专知
65+阅读 · 2020年12月5日
基于二进制哈希编码快速学习的快速图像检索
极市平台
12+阅读 · 2018年5月17日
一文看懂常用特征工程方法
AI研习社
17+阅读 · 2018年5月2日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员