Fast assimilation of monitoring data to update forecasts of pressure buildup and carbon dioxide (CO2) plume migration under geologic uncertainties is a challenging problem in geologic carbon storage. The high computational cost of data assimilation with a high-dimensional parameter space impedes fast decision-making for commercial-scale reservoir management. We propose to leverage physical understandings of porous medium flow behavior with deep learning techniques to develop a fast history matching-reservoir response forecasting workflow. Applying an Ensemble Smoother Multiple Data Assimilation framework, the workflow updates geologic properties and predicts reservoir performance with quantified uncertainty from pressure history and CO2 plumes interpreted through seismic inversion. As the most computationally expensive component in such a workflow is reservoir simulation, we developed surrogate models to predict dynamic pressure and CO2 plume extents under multi-well injection. The surrogate models employ deep convolutional neural networks, specifically, a wide residual network and a residual U-Net. The workflow is validated against a flat three-dimensional reservoir model representative of a clastic shelf depositional environment. Intelligent treatments are applied to bridge between quantities in a true-3D reservoir model and those in a single-layer reservoir model. The workflow can complete history matching and reservoir forecasting with uncertainty quantification in less than one hour on a mainstream personal workstation.
翻译:通过快速吸收监测数据来更新在地质不确定性下的压力积累和二氧化碳(CO2)羽流迁移的预测,这是地质碳储存中一个具有挑战性的问题。高维参数空间数据吸收的计算成本高,妨碍了商业规模储油层管理的快速决策。我们提议利用深学习技术来利用对多孔中流行为的实际理解,以发展快速历史匹配-储量反应预测工作流程。应用一个混合的光滑多数据模拟框架,工作流程更新地质特性并预测储油层的性能,从压力历史和通过地震回流解释的CO2羽流中量化不确定性。由于这种工作流程中最昂贵的计算成本部分是储油层模拟,我们开发了模拟模型,以预测多井喷入的动态压力和二氧化碳羽流范围。 代孕模型利用深革命性神经网络,特别是一个宽广的残余网络和残余的U-Net。根据一个代表一个单层储量储量沉积环境的平坦层三维储量模型验证了该工作流程。在一个真正的-3-D级数据库中,一个完整的空间数据库中,一个完整地基级数据库和一个比历史流流流流流流流流中一个模型可以用于一个完整的桥梁。