Unwanted samples from private source categories in the learning objective of a partial domain adaptation setup can lead to negative transfer and reduce classification performance. Existing methods, such as re-weighting or aggregating target predictions, are vulnerable to this issue, especially during initial training stages, and do not adequately address overlapping categorical distributions. We propose a solution to overcome these limitations by exploring beyond the first-order moments for robust alignment of categorical distributions. We employ objectives that optimize the intra and inter-class distributions in a domain-invariant fashion and design a robust pseudo-labeling for efficient target supervision. Our approach incorporates a complement entropy objective module to reduce classification uncertainty and flatten incorrect category predictions. The experimental findings and ablation analysis of the proposed modules demonstrate the superior performance of our proposed model compared to benchmarks.
翻译:暂无翻译