While there have been many results on lower bounds for Max Cut in unweighted graphs, the only lower bound for non-integer weights is that by Poljak and Turzik (1986). In this paper, we launch an extensive study of lower bounds for Max Cut in weighted graphs. We introduce a new approach for obtaining lower bounds for Weighted Max Cut. Using it, Probabilistic Method, Vizing's chromatic index theorem, and other tools, we obtain several lower bounds for arbitrary weighted graphs, weighted graphs of bounded girth and triangle-free weighted graphs. We pose conjectures and open questions.
翻译:虽然在未加权的图表中,最大切除的下限线有许多结果,但非整数重量下限的唯一下限是Poljak和Turzik(1986年)。在本文中,我们对加权图表中的最大切除的下限线进行了广泛的研究。我们引入了一种新办法,为加权的Max Cut获取下限线。使用这种方法,概率法,Vizing的染色指数理论和其他工具,我们获得了若干任意加权图表、约束的Girth和三角无三角的加权图表的下限线线。我们提出了猜测和开放的问题。