Various cryptographic techniques are used in outsourced database systems to ensure data privacy while allowing for efficient querying. This work proposes a definition and components of a new secure and efficient outsourced database system, which answers various types of queries, with different privacy guarantees in different security models. This work starts with the survey of five order-revealing encryption schemes that can be used directly in many database indices and five range query protocols with various security / efficiency tradeoffs. The survey systematizes the state-of-the-art range query solutions in a snapshot adversary setting and offers some non-obvious observations regarding the efficiency of the constructions. In $\mathcal{E}\text{psolute}$, a secure range query engine, security is achieved in a setting with a much stronger adversary where she can continuously observe everything on the server, and leaking even the result size can enable a reconstruction attack. $\mathcal{E}\text{psolute}$ proposes a definition, construction, analysis, and experimental evaluation of a system that provably hides both access pattern and communication volume while remaining efficient. The work concludes with $k\text{-a}n\text{o}n$ -- a secure similarity search engine in a snapshot adversary model. The work presents a construction in which the security of $k\text{NN}$ queries is achieved similarly to OPE / ORE solutions -- encrypting the input with an approximate Distance Comparison Preserving Encryption scheme so that the inputs, the points in a hyperspace, are perturbed, but the query algorithm still produces accurate results. We use TREC datasets and queries for the search, and track the rank quality metrics such as MRR and nDCG. For the attacks, we build an LSTM model that trains on the correlation between a sentence and its embedding and then predicts words from the embedding.


翻译:外包数据库系统使用各种加密技术,以确保数据隐私,同时允许高效查询。 这项工作提出了一个新的安全高效外包数据库系统的定义和组成部分, 该系统可以解答各种类型的询问, 在不同的安全模式中提供不同的隐私保障。 这项工作始于对五个直接用于许多数据库指数的重置加密计划的调查, 以及五个范围查询协议, 包括各种安全/ 效率取舍。 调查将最先进的范围查询解决方案系统系统系统系统系统系统系统系统系统系统系统化, 在一个瞬间对手设置中, 提供一些关于构建效率的非明显可见的观测。 在一个安全范围的查询引擎($mathcal{E_ text{ littlex{Splittle}$) 中, 在一个更强大的敌人环境中, 她可以持续观察服务器上的所有内容, 并泄露结果大小可以进行重建攻击。 $mathcal calal commalal expressionalation, 和 explicalalal deal dealations the Systems, the smal requirealalalal ress, the modeal and preal- sal- hal exprettlegreal demotional a surate_

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
The Geometry of Robust Value Functions
Arxiv
0+阅读 · 2022年8月11日
Arxiv
0+阅读 · 2022年8月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员