Electric vehicles (EVs) play critical roles in autonomous mobility-on-demand (AMoD) systems, but their unique charging patterns increase the model uncertainties in AMoD systems (e.g. state transition probability). Since there usually exists a mismatch between the training and test (true) environments, incorporating model uncertainty into system design is of critical importance in real-world applications. However, model uncertainties have not been considered explicitly in EV AMoD system rebalancing by existing literature yet and remain an urgent and challenging task. In this work, we design a robust and constrained multi-agent reinforcement learning (MARL) framework with transition kernel uncertainty for the EV rebalancing and charging problem. We then propose a robust and constrained MARL algorithm (ROCOMA) that trains a robust EV rebalancing policy to balance the supply-demand ratio and the charging utilization rate across the whole city under state transition uncertainty. Experiments show that the ROCOMA can learn an effective and robust rebalancing policy. It outperforms non-robust MARL methods when there are model uncertainties. It increases the system fairness by 19.6% and decreases the rebalancing costs by 75.8%.
翻译:电动车辆(EVs)在自动按需流动(AMOD)系统中发挥着关键作用,但是它们独特的收费模式增加了AMOD系统中的模型不确定性(例如州过渡概率)。由于培训和测试(真实)环境之间通常存在不匹配,因此将模型不确定性纳入系统设计对于现实世界的应用至关重要。然而,在EV AMOD系统中,现有文献尚未明确考虑模型不确定性,这种平衡仍然是一项紧迫和具有挑战性的任务。在这项工作中,我们设计了一个强有力和受限制的多试剂强化学习框架,为EV再平衡和充电问题提供过渡内核不确定性。我们然后提出一个强大和受限制的MARL算法(ROCOMA),用于培训强有力的EV再平衡政策,以平衡供需比率和整个城市在州过渡不确定情况下的收费利用率。实验表明,RECOMA可以学习有效和有力的再平衡政策。当模型不确定性存在时,它比非紫外MARL方法要强得多。它提高了系统公平性,增加了19.6%,再平衡成本减少75.8%。