Markov Chain Monte Carlo (MCMC) is a powerful method for drawing samples from non-standard probability distributions and is utilized across many fields and disciplines. Methods such as Metropolis-Adjusted Langevin (MALA) and Hamiltonian Monte Carlo (HMC), which use gradient information to explore the target distribution, are popular variants of MCMC. The Sequential Monte Carlo (SMC) sampler is an alternative sampling method which, unlike MCMC, can readily utilise parallel computing architectures and also has tuning parameters not available to MCMC. One such parameter is the L-kernel which can be used to minimise the variance of the estimates from an SMC sampler. In this letter, we show how the proposal used in the No-U-Turn Sampler (NUTS), an advanced variant of HMC, can be incorporated into an SMC sampler to improve the efficiency of the exploration of the target space. We also show how the SMC sampler can be optimized using both a near-optimal L-kernel and a Hamiltonian proposal
翻译:Markov 链链蒙特卡洛(MCMC)是一种从非标准概率分布中提取样本的有力方法,在许多领域和学科中使用了这种方法,例如Meopolis-Addraided Langevin(MALA)和Hamiltonian Monte Carlo(HMC),它们使用梯度信息来探索目标分布,是MCMC的流行变体。SMC的序列蒙特卡洛(SMC)取样器是一种替代抽样方法,与MCMC不同,它们可以很容易地使用平行的计算结构,并且也有MC无法使用的调试参数。其中一个参数是L内核,可以用来尽量减少SMC取样器估计数的差异。我们在信中说明了如何将无U-Turn采样器(NUTS)(HMC的先进变体)中的建议纳入SMC采样器,以提高目标空间勘探的效率。我们还说明了如何利用接近最佳的L内核和汉密尔顿建议优化SMC采样器。