Testing isomorphism of infinite groups is a classical topic, but from the complexity theory viewpoint, few results are known. S\'enizergues and Wei\ss (ICALP2018) proved that the isomorphism problem for virtually free groups is decidable in $\mathsf{PSPACE}$ when the input is given in terms of so-called virtually free presentations. Here we consider the isomorphism problem for the class of \emph{plain groups}, that is, groups that are isomorphic to a free product of finitely many finite groups and finitely many copies of the infinite cyclic group. Every plain group is naturally and efficiently presented via an inverse-closed finite convergent length-reducing rewriting system. We prove that the isomorphism problem for plain groups given in this form lies in the polynomial time hierarchy, more precisely, in $\Sigma_3^{\mathsf{P}}$. This result is achieved by combining new geometric and algebraic characterisations of groups presented by inverse-closed finite convergent length-reducing rewriting systems developed in recent work of Elder and Piggott (2021) with classical finite group isomorphism results of Babai and Szemer\'edi (1984).
翻译:无限群落的测试是典型的话题, 但从复杂的理论角度看, 鲜为人知。 S\'enizergues 和 Wei\s (CricalP2018) 证明, 当输入所谓的免费演示时, 无限群落的测试是一个经典主题。 我们在这里考虑 \ emph{ platin groups} 类群体的无形态化问题, 即, 向有限的有限组群和无限循环组群的有限复制件的自由产物的无形态化组群。 每个平质组通过反封闭的有限趋同减慢长重写系统自然和有效地展示。 我们证明, 以这种形式给出的简单组群落的无形态化问题在于多时段等级, 更确切地说, $\Sigma_ 3\\\ mathsf{P ⁇ } 。 通过将反封闭的固定趋同式的变换后系统( 20年) 和最近改革的SBIAS- gregalimal- regal- chal- chal- graphal- chal- checking sal- graphal- chal- chal- 21) 和最近的工作结果相结合, 和后, 将新的几- glas- glas- glas- glasmal- sal- glasmal- g) 和新的变制制制制制结果合并而实现。