This article contains new tools for studying the shape of the stationary distribution of sizes in a dynamic economic system in which units experience random multiplicative shocks and are occasionally reset. Each unit has a Markov-switching type which influences their growth rate and reset probability. We show that the size distribution has a Pareto upper tail, with exponent equal to the unique positive solution to an equation involving the spectral radius of a certain matrix-valued function. We illustrate the use of our results by applying them to the wealth distribution in a heterogeneous-agent general equilibrium model, in which agents engage in private enterprise and trade risk-free bonds while subject to Markov-switching productivity and mortality risk. A plausible numerical calibration yields a Pareto exponent of 1.39 for the upper tail of the wealth distribution, similar to estimates obtained from cross-sectional data.
翻译:本条载有研究动态经济体系中大小的固定分布形状的新工具,在这个动态经济体系中,单位经历随机的多倍冲击,有时会重新设置。每个单位都有马克夫开关类型,影响其增长率和重新设定概率。我们表明,尺寸分布有一个帕雷托上尾巴,其推理相当于涉及某一矩阵价值函数光谱半径的方程式的独特积极解决办法。我们通过将结果应用到一个多元剂一般平衡模型中的财富分配中来说明我们的结果的用途,该模型中,代理商在采用马可夫开关生产率和死亡风险的情况下,从事私营企业和贸易无风险债券。合理的数字校准为财富分配上尾巴提供了1.39的比方方方方,类似于从跨部门数据中得出的估计值。