Learning to integrate non-linear equations from highly resolved direct numerical simulations (DNSs) has seen recent interest due to the potential to reduce the computational load for numerical fluid simulations. Here, we focus on a specific problem in the integration of fluids: the determination of a flux-limiter for shock capturing methods. Focusing on flux limiters learned from data has the advantage of providing specific plug-and-play components for existing numerical methods. Since their introduction, a large array of flux limiters has been designed. Using the example of the coarse-grained Burgers' equation, we show that flux-limiters may be rank-ordered in terms of how well they integrate various coarse-grainings. We then develop theory to find an optimal flux-limiter and present a set of flux-limiters that outperform others tested for integrating Burgers' equation on lattices with $2\times$, $3\times$, $4\times$, and $8\times$ coarse-grainings. Our machine learned flux limiters have distinctive features that may provide new rules-of-thumb for the development of improved limiters. Additionally, we optimize over hyper-parameters, including coarse-graining, number of discretized bins, and diffusion parameter to find flux limiters that are best on average and more broadly useful for general applications. Our study provides a basis for understanding how flux limiters may be improved upon using machine learning methods.


翻译:从高度解析的直接数字模拟(DNSs)中学习整合非线性方程式,最近人们因有可能减少数字流模拟的计算负荷而感兴趣。在这里,我们侧重于流体集成中的一个具体问题:确定冲击捕捉方法的通量限值;关注从数据中吸取的通量限值具有为现有数字方法提供特定的插座和播放元件的优势。自引入以来,设计了一大串通量限值。我们以粗糙的汉堡方程式为例,显示通量限值的排序可能是分级的,说明它们如何将各种粗略测值集成成。我们然后发展理论,寻找最佳通量限值限制,提出一套通量限值限制值优于其他测试的通量限值,将布尔格斯的方程式配成2美元、3美元、4美元和8美元的通量限值限制。我们机器学得的通量限值限制有不同的特性,可以提供新规则的通量限值,用于我们更精确的流度的流度应用。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月18日
Arxiv
0+阅读 · 2021年6月22日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
6+阅读 · 2019年12月30日
Arxiv
24+阅读 · 2019年11月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
162+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Machine Learning:十大机器学习算法
开源中国
21+阅读 · 2018年3月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员