Active galactic nuclei (AGN) are supermassive black holes with luminous accretion disks found in some galaxies, and are thought to play an important role in galaxy evolution. However, traditional optical spectroscopy for identifying AGN requires time-intensive observations. We train a convolutional neural network (CNN) to distinguish AGN host galaxies from non-active galaxies using a sample of 210,000 Sloan Digital Sky Survey galaxies. We evaluate the CNN on 33,000 galaxies that are spectrally classified as composites, and find correlations between galaxy appearances and their CNN classifications, which hint at evolutionary processes that affect both galaxy morphology and AGN activity. With the advent of the Vera C. Rubin Observatory, Nancy Grace Roman Space Telescope, and other wide-field imaging telescopes, deep learning methods will be instrumental for quickly and reliably shortlisting AGN samples for future analyses.
翻译:活性银核(AGN)是超大缩黑洞,在一些星系中发现了光弧磁盘,被认为在星系进化中发挥了重要作用。然而,用于识别AGN的传统光谱光谱分析需要时间密集型观测。我们用21万个Sloan数字天空测量星系样本,培训一个进化神经网络(CNN),将AGN宿主星系与非活性星系区分开来。我们评估了33,000个光谱分类为复合星系的CNN星系,并发现了星系外观与CNN分类之间的关系,这提示了影响星系形态学和AGN活动的进化过程。随着Vera C.Rubin天文台、Nancy Grace Grace Roman空间望远镜和其他广域成像望远镜的出现,深层次学习方法将有助于快速和可靠地将AGN样本用于未来分析。