Multidimensional heterogeneity and endogeneity are important features of models with multiple treatments. We consider a heterogeneous coefficients model where the outcome is a linear combination of dummy treatment variables, with each variable representing a different kind of treatment. We use control variables to give necessary and sufficient conditions for identification of average treatment effects. With mutually exclusive treatments we find that, provided the heterogeneous coefficients are mean independent from treatments given the controls, a simple identification condition is that the generalized propensity scores (Imbens, 2000) be bounded away from zero and that their sum be bounded away from one, with probability one. Our analysis extends to distributional and quantile treatment effects, as well as corresponding treatment effects on the treated. These results generalize the classical identification result of Rosenbaum and Rubin (1983) for binary treatments.
翻译:多元异性和内分性是多种治疗模式的重要特征。 我们考虑的是一个多变量系数模型,其结果为模拟治疗变量的线性组合,每个变量代表一种不同的治疗。我们使用控制变量为确定平均治疗效果提供必要和充分的条件。我们发现,通过相互排斥的治疗,我们发现,如果差异系数与受控的治疗是平均独立的,一个简单的识别条件是,普遍倾向分数(Imbens,2000年)与零相隔绝,其总和与一个相隔绝,概率为一。我们的分析延伸至分布式和量性治疗效果,以及对被治疗者的相应治疗效果。这些结果概括了罗森堡和鲁宾(1983年)对二元治疗的典型识别结果。