Multidimensional heterogeneity and endogeneity are important features of models with multiple treatments. We consider a heterogeneous coefficients model where the outcome is a linear combination of dummy treatment variables, with each variable representing a different kind of treatment. We use control variables to give necessary and sufficient conditions for identification of average treatment effects. With mutually exclusive treatments we find that, provided the heterogeneous coefficients are mean independent from treatments given the controls, a simple identification condition is that the generalized propensity scores (Imbens, 2000) be bounded away from zero and that their sum be bounded away from one, with probability one. Our analysis extends to distributional and quantile treatment effects, as well as corresponding treatment effects on the treated. These results generalize the classical identification result of Rosenbaum and Rubin (1983) for binary treatments.


翻译:多元异性和内分性是多种治疗模式的重要特征。 我们考虑的是一个多变量系数模型,其结果为模拟治疗变量的线性组合,每个变量代表一种不同的治疗。我们使用控制变量为确定平均治疗效果提供必要和充分的条件。我们发现,通过相互排斥的治疗,我们发现,如果差异系数与受控的治疗是平均独立的,一个简单的识别条件是,普遍倾向分数(Imbens,2000年)与零相隔绝,其总和与一个相隔绝,概率为一。我们的分析延伸至分布式和量性治疗效果,以及对被治疗者的相应治疗效果。这些结果概括了罗森堡和鲁宾(1983年)对二元治疗的典型识别结果。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
14+阅读 · 2021年5月21日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月23日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
4+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员