We study how neural networks trained by gradient descent extrapolate, i.e., what they learn outside the support of the training distribution. Previous works report mixed empirical results when extrapolating with neural networks: while multilayer perceptrons (MLPs) do not extrapolate well in certain simple tasks, Graph Neural Network (GNN), a structured network with MLP modules, has shown some success in more complex tasks. Working towards a theoretical explanation, we identify conditions under which MLPs and GNNs extrapolate well. First, we quantify the observation that ReLU MLPs quickly converge to linear functions along any direction from the origin, which implies that ReLU MLPs do not extrapolate most non-linear functions. But, they provably learn a linear target function when the training distribution is sufficiently "diverse". Second, in connection to analyzing successes and limitations of GNNs, these results suggest a hypothesis for which we provide theoretical and empirical evidence: the success of GNNs in extrapolating algorithmic tasks to new data (e.g., larger graphs or edge weights) relies on encoding task-specific non-linearities in the architecture or features. Our theoretical analysis builds on a connection of overparameterized networks to the neural tangent kernel. Empirically, our theory holds across different training settings.


翻译:我们研究的是由梯度下层外推法培训的神经网络是如何在培训分布之外外推法的,即他们学到了什么在培训分布表外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法上的结果。 先前的工作报告在与神经网络外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法内推法内推法内推法内推法内推法外推法内推法内推法内推法内推法内推法内推法外推法内推法内推法外推法外推法外推法外推法外推法外推法内推法外的理论的理论的理论的理论的理论的理论性模型, 的理论性模型的理论法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外推法外

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
已删除
将门创投
3+阅读 · 2019年10月18日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Graphs, Convolutions, and Neural Networks
Arxiv
0+阅读 · 2021年1月11日
Arxiv
27+阅读 · 2020年6月19日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
9+阅读 · 2020年2月15日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
已删除
将门创投
3+阅读 · 2019年10月18日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Graphs, Convolutions, and Neural Networks
Arxiv
0+阅读 · 2021年1月11日
Arxiv
27+阅读 · 2020年6月19日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
9+阅读 · 2020年2月15日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
23+阅读 · 2018年10月1日
Top
微信扫码咨询专知VIP会员