In this paper, we investigate the learnability of the function approximator that approximates Nash equilibrium (NE) for games generated from a distribution. First, we offer a generalization bound using the Probably Approximately Correct (PAC) learning model. The bound describes the gap between the expected loss and empirical loss of the NE approximator. Afterward, we prove the agnostic PAC learnability of the Nash approximator. In addition to theoretical analysis, we demonstrate an application of NE approximator in experiments. The trained NE approximator can be used to warm-start and accelerate classical NE solvers. Together, our results show the practicability of approximating NE through function approximation.
翻译:在本文中,我们调查了在分布式游戏中接近纳什平衡(NE)的功能近似值的学习能力。 首先,我们使用“准准正(PAC)”学习模型进行概括化。 框说明了NE近似值的预期损失与经验损失之间的差距。 之后, 我们证明了纳什近似值的不可知性 PAC 学习能力。 除了理论分析外, 我们演示了NE 近似值在实验中的应用。 经过训练的 NE 近似值可用于温暖启动和加速经典NE解算器。 我们的结果一起表明,通过功能近似值, 近似NE的实用性。