Trivial choreographies are special periodic solutions of the planar three-body problem. In this work we use a modified Newton's method based on the continuous analog of Newton's method and a high precision arithmetic for a specialized numerical search for new trivial choreographies. As a result of the search we computed a high precision database of 462 such orbits, including 397 new ones. The initial conditions and the periods of all found solutions are given with 180 correct decimal digits. 108 of the choreographies are linearly stable, including 99 new ones. The linear stability is tested by a high precision computing of the eigenvalues of the monodromy matrices.
翻译:Trivial 编舞是平面三体问题的特殊定期解决办法。 在这项工作中,我们使用基于牛顿方法连续类比和高精密算术的修改牛顿方法,用于对新的细小编舞进行专门的数字搜索。通过搜索,我们计算出了462个此类轨道的高精密数据库,包括397个新轨道。所有发现解决办法的初始条件和周期用180个正确的小数数字给出。108个编舞线性稳定,包括99个新数字。线性稳定性通过对单极矩阵的光值进行高精密计算进行测试。