Nonlinear monotone transformations are used extensively in normalizing flows to construct invertible triangular mappings from simple distributions to complex ones. In existing literature, monotonicity is usually enforced by restricting function classes or model parameters and the inverse transformation is often approximated by root-finding algorithms as a closed-form inverse is unavailable. In this paper, we introduce a new integral-based approach termed "Atomic Unrestricted Time Machine (AUTM)", equipped with unrestricted integrands and easy-to-compute explicit inverse. AUTM offers a versatile and efficient way to the design of normalizing flows with explicit inverse and unrestricted function classes or parameters. Theoretically, we present a constructive proof that AUTM is universal: all monotonic normalizing flows can be viewed as limits of AUTM flows. We provide a concrete example to show how to approximate any given monotonic normalizing flow using AUTM flows with guaranteed convergence. The result implies that AUTM can be used to transform an existing flow into a new one equipped with explicit inverse and unrestricted parameters. The performance of the new approach is evaluated on high dimensional density estimation, variational inference and image generation. Experiments demonstrate superior speed and memory efficiency of AUTM.
翻译:在常规化过程中,广泛使用非线性单调单调转换,以构建从简单分布到复杂分布的垂直三角图象。在现有的文献中,单调通常是通过限制功能类别或模型参数来强制实施的,反向转换往往被根调查算法所近似,因为没有封闭式的反形。在本文中,我们引入了一种新的基于整体的方法,称为“Atomic Unrestriced Time(AUTM)”,配有不受限制的成群和容易测量的清晰反向。AUTM为设计具有明确反向和不受限制功能类别或参数的正常化流提供了灵活而有效的方法。理论上,我们提出了一个建设性的证据,证明AUTM是普遍的:所有单调的正常流都可以被视为AUTM流的极限。我们提供了一个具体的例子,表明如何利用有保证汇合的AUTM流来将任何特定的单调的正常流相连接。结果意味着,AUTM可以用来将现有的流动转换成一个新的有明确反向和不受限制参数的新的流动。新的方法的性表现是在高维度的存储率和高度的图像中,显示AULILAV的高级密度的生成。