Most recommendation engines today are based on predicting user engagement, e.g. predicting whether a user will click on an item or not. However, there is potentially a large gap between engagement signals and a desired notion of "value" that is worth optimizing for. We use the framework of measurement theory to (a) confront the designer with a normative question about what the designer values, (b) provide a general latent variable model approach that can be used to operationalize the target construct and directly optimize for it, and (c) guide the designer in evaluating and revising their operationalization. We implement our approach on the Twitter platform on millions of users. In line with established approaches to assessing the validity of measurements, we perform a qualitative evaluation of how well our model captures a desired notion of "value".
翻译:今天,大多数建议引擎都以预测用户参与为基础,例如预测用户是否会点击某个项目。然而,在接触信号和值得优化的“价值”理想概念之间可能存在巨大差距。我们利用衡量理论框架来(a) 向设计者提出设计者关于什么是设计者价值的规范性问题,(b) 提供一般的潜在变量模型方法,可用于实施目标构建并直接优化,(c) 指导设计者评价和修订其操作性。我们在数百万用户的Twitter平台上实施我们的方法。根据评估计量有效性的既定方法,我们对模型捕捉理想的“价值”概念的程度进行定性评估。