We can make it easier for disabled users to control assistive robots by mapping the user's low-dimensional joystick inputs to high-dimensional, complex actions. Prior works learn these mappings from human demonstrations: a non-disabled human either teleoperates or kinesthetically guides the robot arm through a variety of motions, and the robot learns to reproduce the demonstrated behaviors. But this framework is often impractical -- disabled users will not always have access to external demonstrations! Here we instead learn diverse teleoperation mappings without either human demonstrations or pre-defined tasks. Under our unsupervised approach the robot first optimizes for object state entropy: i.e., the robot autonomously learns to push, pull, open, close, or otherwise change the state of nearby objects. We then embed these diverse, object-oriented behaviors into a latent space for real-time control: now pressing the joystick causes the robot to perform dexterous motions like pushing or opening. We experimentally show that -- with a best-case human operator -- our unsupervised approach actually outperforms the teleoperation mappings learned from human demonstrations, particularly if those demonstrations are noisy or imperfect. But user study results are less clear-cut: although our approach enables participants to complete tasks with multiple objects more quickly, the unsupervised mapping also learns motions that the human does not need, and these additional behaviors may confuse the human.


翻译:我们可以让残疾用户更容易控制辅助机器人, 方法是绘制用户低维的游戏杆输入到高维、 复杂的动作中。 先前的作品从人类演示中学习这些绘图: 一个非残疾的人类, 或者是远程操作, 或者是运动感官引导机器人手臂通过各种动作, 而机器人则学习复制所显示的行为。 但是这个框架通常不切实际 -- 残疾用户不会总是有机会使用外部演示! 我们在这里学习多种远程操作图, 而没有人类演示或预先确定的任务。 在我们的未受监督的方法下, 我们的机器人首先优化物体状态: 也就是说, 机器人自主地学习推动、拉动、 打开、 关闭或以其他方式改变附近物体的状态。 我们然后将这些多样化的、 面向对象的行为嵌入一个潜在的空间, 以便实时控制。 现在按下游戏杆可以让机器人像推动或打开那样进行极具魅力的动作。 我们实验性地显示 -- 有了最能处理的人操作者 -- 我们的不超强的方法实际上超越了从人类演示中学会的远程绘图, 。 特别是如果这些演示者的行为不完美, 能够快速地学习不精确的动作。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员