3D LiDAR semantic segmentation is fundamental for autonomous driving. Several Unsupervised Domain Adaptation (UDA) methods for point cloud data have been recently proposed to improve model generalization for different sensors and environments. Researchers working on UDA problems in the image domain have shown that sample mixing can mitigate domain shift. We propose a new approach of sample mixing for point cloud UDA, namely Compositional Semantic Mix (CoSMix), the first UDA approach for point cloud segmentation based on sample mixing. CoSMix consists of a two-branch symmetric network that can process labelled synthetic data (source) and real-world unlabelled point clouds (target) concurrently. Each branch operates on one domain by mixing selected pieces of data from the other one, and by using the semantic information derived from source labels and target pseudo-labels. We evaluate CoSMix on two large-scale datasets, showing that it outperforms state-of-the-art methods by a large margin. Our code is available at https://github.com/saltoricristiano/cosmix-uda.
翻译:3D LiDAR 语义分解是自主驱动的基础。 最近,为了改进不同感应器和环境的模型概括化,提出了几种未受监督的点云数据多功能适应(UDA)方法。在图像域内研究UDA问题的研究人员已经表明,样本混合可以减缓域位转移。我们提出了一种新的方法,将样本混合用于点云UDA,即:合成语义混合(Cosmix),这是基于样本混合的点云分解的首个UDA方法。 CoSMIx由两层对称网络组成,可以同时处理贴有标签的合成数据(源)和真实世界无标签点云(目标)。每个分支都在一个领域运作,将来自另一分支的部分数据混合在一起,并使用来源标签和目标假标签产生的语义信息。我们对两个大型数据集的 CoSMISix进行了评估,显示其以大边缘值表现了艺术状态的方法。我们的代码可在 https://github.com/saltoricristian/comix-udus-da上查阅。