We consider extrapolation of the Arnoldi algorithm to accelerate computation of the dominant eigenvalue/eigenvector pair. The basic algorithm uses sequences of Krylov vectors to form a small eigenproblem which is solved exactly. The two dominant eigenvectors output from consecutive Arnoldi steps are then recombined to form an extrapolated iterate, and this accelerated iterate is used to restart the next Arnoldi process. We present numerical results testing the algorithm on a variety of cases and find on most examples it substantially improves the performance of restarted Arnoldi. The extrapolation is a simple post-processing step which has minimal computational cost.
翻译:我们考虑对Arnoldi 算法进行外推法,以加速计算占支配地位的egenvalue/egenvector 配对。 基本算法使用 Krylov 矢量序列组成一个小的igenbollem, 这个问题已经完全解决了。 由Arnoldi 连续步骤得出的两个占支配地位的 egenvisors 输出随后被重新组合成一个外推迭, 而这个加速的迭代法被用来重新启动下一个 Arnoldi 进程。 我们用数字结果来测试各种案例的算法, 并在大多数例子中发现它大大改善了重新启用的Arnoldi 的性能。 外推法是一个简单的后处理步骤, 其计算成本极低。