Since almost twenty years, modified Patankar--Runge--Kutta (MPRK) methods have proven to be efficient and robust numerical schemes that preserve positivity and conservativity of the production-destruction system irrespectively of the time step size chosen. Due to these advantageous properties they are used for a wide variety of applications. Nevertheless, until now, an analytic investigation of the stability of MPRK schemes is still missing, since the usual approach by means of Dahlquist's equation is not feasible. Therefore, we consider a positive and conservative 2D test problem and provide statements usable for a stability analysis of general positive and conservative time integrator schemes based on the center manifold theory. We use this approach to investigate the Lyapunov stability of the second order MPRK22($\alpha$) and MPRK22ncs($\alpha$) schemes. We prove that MPRK22($\alpha$) schemes are unconditionally stable and derive the stability regions of MPRK22ncs($\alpha$) schemes. Finally, numerical experiments are presented, which confirm the theoretical results.
翻译:自近20年以来,经过修改的Patankar-Runge-Kutta(MPRK)方法已证明是有效和稳健的数字方法,无论选择的时间步长度大小,都能够保护生产销毁系统的积极性和保守性,由于这些有利的特性,这些方法被用于各种各样的应用,然而,到目前为止,仍然缺乏对MPK计划稳定性的分析调查,因为通常采用Dahlquist等式的方法是不可行的。因此,我们认为,2D测试是一个积极和保守的测试问题,并提供了可用于对基于中心多重理论的一般积极性和保守时间整合器方法进行稳定分析的报表。我们使用这种方法调查了MPRK22($\alpha$)和MPRK22nc($\alpha$)第二顺序的Lyapunov稳定性。我们证明,MPRK22($\alpha$)计划是无条件稳定的,并得出了MPRK22nc($\alpha$)计划的稳定区域。最后,我们提出了数字实验,证实了理论结果。