A decoding algorithm for polar (sub)codes with binary $2^t\times 2^t$ polarization kernels is presented. It is based on the window processing (WP) method, which exploits the linear relationship of the polarization kernels and the Arikan matrix. This relationship enables one to compute the kernel input symbols probabilities by computing the probabilities of several paths in Arikan successive cancellation (SC) decoder. In this paper we propose an improved version of WP, which has significantly lower arithmetic complexity and operates in log-likelihood ratios (LLRs) domain. The algorithm identifies and reuses common subexpressions arising in computation of Arikan SC path scores. The proposed algorithm is applied to kernels of size 16 and 32 with improved polarization properties. It enables polar (sub)codes with the considered kernels to simultaneously provide better performance and lower decoding complexity compared with polar (sub)codes with Arikan kernel.
翻译:以二进制 2 ⁇ t\time 2 ⁇ t$两极分化内核的极地( 子) 代码解码算法 。 它基于窗口处理法( WP), 利用了极化内核和 Arikan 矩阵的线性关系。 这种关系可以计算 Arikan 相继取消( SC) 解码器中多个路径的概率, 计算内核输入符号概率。 在本文中, 我们建议改进WP的版本, 它的算术复杂性要低得多, 并在日志类比比率( LLLLRs) 域操作。 算法确定并重新使用在计算 Arikan SC 路径分数时产生的常见子表达法。 提议的算法适用于16 和 32 号的内核内核, 其极化特性会得到改善。 它使得与考虑的内核的极( 子) 编码能够同时提供更好的性能和较低解码的复杂度, 与 Arikan 的极( 子) 编码相比, 。