Generative retrieval is a promising new paradigm in text retrieval that generates identifier strings of relevant passages as the retrieval target. This paradigm leverages powerful generation models and represents a new paradigm distinct from traditional learning-to-rank methods. However, despite its rapid development, current generative retrieval methods are still limited. They typically rely on a heuristic function to transform predicted identifiers into a passage rank list, which creates a gap between the learning objective of generative retrieval and the desired passage ranking target. Moreover, the inherent exposure bias problem of text generation also persists in generative retrieval. To address these issues, we propose a novel framework, called LTRGR, that combines generative retrieval with the classical learning-to-rank paradigm. Our approach involves training an autoregressive model using a passage rank loss, which directly optimizes the autoregressive model toward the optimal passage ranking. This framework only requires an additional training step to enhance current generative retrieval systems and does not add any burden to the inference stage. We conducted experiments on three public datasets, and our results demonstrate that LTRGR achieves state-of-the-art performance among generative retrieval methods, indicating its effectiveness and robustness.
翻译:暂无翻译