Today's serverless computing has several key limitations including per-function resource limits, fixed CPU-to-memory ratio, and constant resource allocation throughout a function execution and across different invocations of it. The root cause of these limitations is the "function-centric" model: a function is a fixed-size box that is allocated, executed, and terminated as an inseparable unit. This unit is pre-defined by the cloud provider and cannot properly capture user needs. We propose a "resource-centric" model for serverless computing, which adapts the underlying provider serverless systems to follow applications' natural resource needs. To achieve this vision, we built Scad based on two ideas: disaggregating a serverless application based on its resource features and aggregating disaggregated units for better performance. Our results show that Scad solves various resource-related issues of today's serverless computing, while retaining or even improving its performance.
翻译:今天的无服务器计算有几个关键的局限性, 包括每个功能的资源限制、 固定的 CPU 对模率, 以及整个功能执行过程中和不同用途的经常性资源分配。 这些限制的根源在于“ 以功能为中心的” 模式: 函数是一个固定大小的框, 被分配、 执行和终止为一个不可分割的单位。 这个单位由云端提供者预先定义, 无法正确捕捉用户需求 。 我们为无服务器计算建议了一个“ 以资源为中心的” 模式, 使基础服务器的无服务器系统适应应用程序的自然资源需求 。 为了实现这一愿景, 我们根据两个想法构建了 Scad : 基于其资源特性对无服务器应用程序进行分类, 并集合了分解单位来更好地运行 。 我们的结果显示, Scad 解决了当今没有服务器计算的各种资源相关问题, 同时保留甚至改进了其性能 。