The irregularity and disorder of point clouds bring many challenges to point cloud analysis. PointMLP suggests that geometric information is not the only critical point in point cloud analysis. It achieves promising result based on a simple multi-layer perception (MLP) structure with geometric affine module. However, these MLP-like structures aggregate features only with fixed weights, while differences in the semantic information of different point features are ignored. So we propose a novel Point-Vector Representation of the point feature to improve feature aggregation by using inductive bias. The direction of the introduced vector representation can dynamically modulate the aggregation of two point features according to the semantic relationship. Based on it, we design a novel Point2Vector MLP architecture. Experiments show that it achieves state-of-the-art performance on the classification task of ScanObjectNN dataset, with 1% increase, compared with the previous best method. We hope our method can help people better understand the role of semantic information in point cloud analysis and lead to explore more and better feature representations or other ways.
翻译:点云的不规则性和混乱性给点云分析带来了许多挑战。 PentMLP 指出, 几何信息并不是点云分析的唯一关键点。 它基于一个简单的多层感知(MLP)结构及其几何方形模块, 取得了大有希望的结果。 但是, 这些类似 MLP 的结构集成特性仅具有固定重量, 而不同点特征的语义信息差异被忽略。 因此, 我们提议使用诱导偏差来对点特征进行新的点- 变量表示, 以改善特征聚合。 引入的矢量代表方向可以动态地根据语义关系调节两个点特征的组合。 我们根据它设计了一个新型的点2Vector MLP 结构。 实验显示, 与先前的最佳方法相比, 扫描ObjectNn 数据集的分类任务取得了最新性能, 增加了1% 。 我们希望我们的方法能够帮助人们更好地了解点云分析中的语义信息的作用, 并导致探索更多更好的特征演示或其他方式 。