Anomalous diffusions are ubiquitous in nature, whose functional distributions are governed by the backward Feynman-Kac equation. In this paper, the local discontinuous Galerkin (LDG) method is used to solve the 2D backward Feynman-Kac equation in a rectangular domain. The spatial semi-discrete LDG scheme of the equivalent form (obtained by Laplace transform) of the original equation is established. After discussing the properties of the fractional substantial calculus, the stability and optimal convergence rates $O(h^{k+1})$ of the semi-discrete scheme are proved by choosing an appropriate generalized numerical flux. The $L1$ scheme on the graded meshes is used to deal with the weak singularity of the solution near the initial time. Based on the theoretical results of a semi-discrete scheme, we investigate the stability and convergence of the fully discrete scheme, which shows the optimal convergence rates $O(h^{k+1}+\tau^{\min\{2-\alpha,\gamma\delta\}})$. Numerical experiments are carried out to show the efficiency and accuracy of the proposed scheme. In addition, we also verify the effect of the central numerical flux on the convergence rates and the condition number of the coefficient matrix.
翻译:异常扩散在性质上是无处不在的, 功能分布由落后的Feynman- Kac方程式调节。 在本文中, 本地不连续的 Galerkin (LDG) 方法用于在矩形域中解析 2D 后向 Feynman- Kac 方程式。 原始方程式的等同形式( 由 Laplace 变换所实现) 空间半分解 LDG 方案已经建立。 在讨论微量微量微积分的特性后, 半分化法的稳定性和最佳趋同率 $O( h ⁇ k+1) +O( h ⁇ k+1} $O (h ⁇ k+) +_\\\\\\\ alpha) 方案的最佳趋同率 得到证明, 选择一个适当的通用数值通融通量 。 分级mesh 的 $ 1 方案用于处理解决方案在初始时间附近的微弱的微单度单一度。 根据半分异方程式的理论结果, 我们调查完全离散的公式的稳定性和趋同式微的组合的趋同性组合, 它的稳定性, 显示最佳趋同率的趋同率 。 Inammamamamama\\\\ claldrocilaldaldalbilgildalticalbilgalgalticalticaltical 的计算法 。